0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of an Automotive Catalyst for CO and NO Emissions

[+] Author Affiliations
Juan C. Prince, Mario Diaz

Instituto Tecnológico de Veracruz, Veracruz, Ver., México

César Treviño

Universidad Nacional Autónoma de México, México, D.F., Mexico

Paper No. ES2008-54218, pp. 205-211; 7 pages
doi:10.1115/ES2008-54218
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Catalytic combustion is useful to avoid emission of carbon monoxide and nitrogen oxides into the environment. The widespread use of the catalytic converter was the response of the automotive industry to the legislation of the countries which sets limits on pollutant emissions. The catalytic combustion of CO + NO and air mixtures in a planar stagnation-point flow over a platinum foil is studied numerically in this paper. In order to optimize the operation of the platinum converter, chemical kinetic knowledge is necessary, therefore a kinetic model is proposed, based on elementary reaction steps, that allows to describe the experiments quantitatively. The heterogeneous reaction mechanism is modeled with the dissociative adsorption of the molecular oxygen and the nondissociative adsorption of CO, together with a surface reaction of the Langmiur-Hinshelwood type and the desorption reaction of the adsorbed products, CO(s) and NO(s). The resulting governing equations based on the boundary layer theory have been numerically integrated by using Runge-Kutta method and the response curve has been obtained as a function of the initial mixture concentration. The reduction of NO and oxidation of CO in absence and presence of O2 has been investigated, and the optimal oxygen feeding into the initial mixture concentration for the maximum reduction of CO and NO was found and corresponds to the reported experimental results.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In