0

Full Content is available to subscribers

Subscribe/Learn More  >

30-Year Life Cycle Cost of Solar Based Domestic Hot Water Systems for Ontario

[+] Author Affiliations
Gurjot S. Gill, Alan S. Fung

Ryerson University, Toronto, Ontario, Canada

Paper No. ES2008-54313, pp. 183-189; 7 pages
doi:10.1115/ES2008-54313
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

The heating of water for domestic purposes presently accounts for 24 percent of Canadian residential energy consumption (Natural Resources Canada, 2006). This energy demand is primarily met by conventional sources such as electricity, natural gas and oil. Recent changes in fuel availability and price as well as environmental concerns lead consumers to give further consideration to the use of solar energy for heating water. The objective of this paper is to simulate the different domestic hot water (DHW) systems to examine their fuel consumption, greenhouse gases (GHG) emissions, life cycle costs and pay back periods. In this case study, seventeen different DHW systems were simulated using TRNSYS as simulation engine. These include solar-based models (with electric and natural gas backup tanks), electric and natural gas tank models (with and without gray water heat recovery), on-demand and combo-boiler systems. This paper will discuss three solar-based systems in detail, however their result comparison with other systems will be discussed. Three different solar-based systems are: I) Solar pre-heat with .56 efficiency natural gas back up tank; II) Solar pre-heat with .94 efficiency electric back up tank; III) Timers (off during peak times 7am till 10 pm) with solar pre-heat and electric (.94 efficiency) secondary. Results indicate that solar alternative having timers with solar pre-heat and electric secondary gives best results in terms of annual fuel consumption ($93) and GHG emissions (266 kg). However on demand modulating gas combo boiler (0.78 efficiency) with gray water heat recovery (0.6 efficiency) has best 30-year life cycle cost ($12332).

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In