0

Full Content is available to subscribers

Subscribe/Learn More  >

Net Energy for Concentrated Solar Power in Chile

[+] Author Affiliations
Rodrigo Escobar, Teresita Larrain

Pontificia Universidad Católica de Chile, Santiago, Chile

Paper No. ES2008-54130, pp. 155-165; 11 pages
doi:10.1115/ES2008-54130
From:
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

The Chilean Energy Policy calls for 15 percent of new power generation capacity to come from renewable energy sources from 2006 to 2010, and then a 5% of electric energy generated from renewable energy sources with gradual increases in order to reach 10% by 2024. Neither the government nor the power generation sector plans mention solar energy to be part of the renewable energy initiative. Part of this apparent lack of interest in solar energy might be due to the absence of a valid solar energy database, adequate for energy system planning activities. Monthly means of solar radiation are used in order to estimate the solar fraction for a 100 MW plant for four given locations. Our analysis considers two cases: operation during sunlight hours, and continuous operation during 24 hours a day. A net energy analysis for concentrated solar power (CSP) plants in Chile is then performed, considering the energy costs of manufacturing, transport, installation, operation and decommissioning. The results indicate that the CSP plants are a net energy source in three of the four locations, when operating in sunlight-only mode. This is due to the lower radiation levels available at that location, which implies a high fossil fuel back-up fraction. In the continuous operation mode, the CSP plants become fossil fuel plants with solar assistance, and therefore all locations display negative net energy. Based on this result, the back-up fraction required for the plants to be net energy sources is estimated from the EROEI as function of the back-up fraction. It is estimated that the net energy analysis is a useful tool for determining under which conditions a CSP plant becomes a net energy source, and thus can be utilized in order to define geographical locations and operation conditions where they can be considered renewable energy sources.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In