0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Behavior of Bubbles and Temperature Fluctuation of Heat Transfer Surface by Using Heat Transfer Surface With Artificial Cavities Created by MEMS Technology

[+] Author Affiliations
Takato Sato, Hiroyasu Ohtake

Kogakuin University, Tokyo, Japan

Yasuo Koizumi

Shinshu University, Tokida, Japan

Paper No. ICNMM2009-82276, pp. 105-111; 7 pages
doi:10.1115/ICNMM2009-82276
From:
  • ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
  • Pohang, South Korea, June 22–24, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4349-9 | eISBN: 978-0-7918-3850-1
  • Copyright © 2009 by ASME

abstract

Pool nucleate boiling heat transfer experiments were performed for water using heat transfer surfaces having a unified cavity. A single cylindrical hole of 10 μm in diameter and 40 μm in depth was formed on a mirror-finished silicon wafer of 0.2 mm in thickness using the Micro-Electro Mechanical Systems (MEMS) technology. This silicon plate was used as the heat transfer surface. The back side of the heat transfer surface was heated by a semi-conductor laser beam. The back-side surface temperature was measured by a radiation thermograph with a temperature resolution of 0.08 K and a time resolution of 3 ms/line. Experiments were conducted in the range up to 1.35 × 105 W/m2 . The standard deviations of the local fluctuating heat transfer surface temperature were calculated. So the cross-correlation coefficients between the cavity center and a certain point were calculated by using the standard deviations and the time-series surface temperature data. Then, the intensity of the thermal influence exerted by the boiling bubbles on the local position was derived. The thermal influence extents determined from the intensity were 2.1 – 3.3 times larger than the mean diameter of all departure bubbles in the present experimental range.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In