Full Content is available to subscribers

Subscribe/Learn More  >

Designing Environmentally Sustainable Electronic Cooling Systems Using Exergo-Thermo-Volumes

[+] Author Affiliations
Amip J. Shah, Chandrakant D. Patel

Hewlett Packard Laboratories, Palo Alto, CA

Paper No. ES2008-54089, pp. 19-27; 9 pages
  • ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences
  • ASME 2008 2nd International Conference on Energy Sustainability, Volume 1
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Advanced Energy Systems Division and Solar Energy Division
  • ISBN: 978-0-7918-4319-2 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


Thermo-volumes allow the design engineer to expediently understand the thermal resistance of a given cooling solution (an indicator of performance) along with its flow resistance (an indicator of the pumping power, or energy consumption, which will be required by the fluid handler). In the present work, we expand upon thermo-volumes by including the lifetime exergy cost (in units of Joules of availability destroyed) as a means to enable the consideration of resource consumption (and thus the environmental sustainability) of the cooling solution. To achieve these exergo-thermo-volumes, we reinterpret previous definitions of thermo-volumes in terms of the entropy generated during heat transfer and fluid flow. The Guoy-Stodola theorem is used to convert this entropy generation into an ‘operational’ exergy loss. Next, based on the material choice and assembly processes used in creating the product, an embedded exergy consumption that accounts for the amount of exergy destroyed during extraction, transportation and disposal of the material is attached to the operational exergy loss. Thus, the total ‘cradle-to-cradle’ exergy loss of the solution is devised. In this framework, the optimal solution will be that which destroys the minimal amount of exergy. Correspondingly, instead of relying upon the COP (which is focused on operational consumption), we propose evaluation of cooling solutions in terms of the heat removal capacity per unit lifetime exergy consumption. The paper concludes by illustrating applicability of the method to the design of an enterprise server. It should be noted that although the paper is focused on electronics cooling solutions, the methodology is designed to be sufficiently general for use in any thermal management application.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In