Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Turbulence Structure and Void Fraction Distribution in Gas-Liquid Two-Phase Flow Under Bubbly and Slug Flow Regime

[+] Author Affiliations
Isao Kataoka, Kenji Yoshida

Osaka University, Suita, Osaka, Japan

Tsutomu Ikeno, Tatsuya Sasakawa

Nuclear Fuel Industries, Ltd., Kumatori, Osaka, Japan

Koichi Kondo

Marine Technical College, Kobe, Japan

Paper No. AJK2011-10003, pp. 2417-2424; 8 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


Accurate analyses of turbulence structure and void fraction distribution are quite important in designing and safety evaluation of various industrial equipments using gas-liquid two-phase flow such as nuclear reactor, etc. Using turbulence model of two-phase flow and models of bubble behaviors in bubble flow and slug flow, systematic analyses of distributions of void fraction, averaged velocity and turbulent velocity were carried out and compared with experimental data. In bubbly flow, diffusion of bubble and lift force are dominant in determining void fraction distribution. On the other hand, in slug flow, large scale turbulence eddies which convey bubbles into the center of flow passage are important in determining void fraction distribution. In turbulence model, one equation turbulence model is used with turbulence generation and turbulence dissipation due to bubbles. Mixing length due to bubble is also modeled. Using these bubble behavior models and turbulence models, systematic predictions were carried out for void distributions and turbulence distributions for wide range of flow conditions of two phase flow including bubbly and slug flow. The results of predictions were compared with experimental data in round straight tube with successful agreement. In particular, concave void distributions in bubbly flow and convex distribution in slug flow were well predicted based on the present model.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In