Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Viscosity, Particle Size, and Particle Shape on Erosion in Gas and Liquid Flows

[+] Author Affiliations
Risa Okita, Yongli Zhang, Brenton S. McLaury, Siamack A. Shirazi, Edmund F. Rybicki

The University of Tulsa, Tulsa, OK

Paper No. AJK2011-09023, pp. 2389-2398; 10 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME


Although solid particle erosion has been examined extensively in the literature for dry gas and vacuum conditions, several parameters affecting solid particle erosion in liquids are not fully understood and need additional investigation. In this investigation, erosion ratios of two materials have been measured in gas and also in liquids with various liquid viscosities and abrasive particle sizes and shapes. Solid particle erosion ratios for aluminum 6061-T6 and 316 stainless steel have been measured for a direct impingement flow condition using a submerged jet geometry, with liquid viscosities of 1, 10, 25, and 50 cP. Sharp and rounded sand particles with average sizes of 20, 150, and 300 μm, as well as spherical glass beads with average sizes of 50, 150 and 350 μm, were used as abrasives. To make comparisons of erosion in gas and liquids, erosion ratios of the same materials in air were measured for sands and glass beads with the particle sizes of 150 and 300 μm. Based on these erosion measurements in gas and liquids, several important observations were made: (1) Particle size did not affect the erosion magnitude for gas while it did for viscous liquids. (2) Although aluminum and stainless steel have significant differences in hardness and material characteristics, the mass losses of these materials were nearly the same for the same mass of impacting particles in both liquid and gas. (3) The most important observation from these erosion tests is that the shape of the particles did not significantly affect the trend of erosion results as liquid viscosity varied. This has an important implication on particle trajectory modeling where it is generally assumed that particles are spherical in shape. Additionally, the particle velocities measured with the Laser Doppler Velocimetry (LDV) near the wall were incorporated into the erosion equations to predict the erosion ratio in liquid for each test condition. The calculated erosion ratios are compared to the measured erosion ratios for the liquid case. The calculated results agree with the trend of the experimental data.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In