0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of PSCF3737 for Intermediate Temperature-Operating Solid Oxide Fuel Cell (IT-SOFC)

[+] Author Affiliations
Kwangjin Park, Seungwhan Baek, Joongmyeon Bae

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

Paper No. FuelCell2008-65042, pp. 929-934; 6 pages
doi:10.1115/FuelCell2008-65042
From:
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • Denver, Colorado, USA, June 16–18, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4318-1 | eISBN: 0-7918-3822-6
  • Copyright © 2008 by ASME

abstract

Pr0.3 Sr0.7 Co0.3 Fe0.7 O3−δ (PSCF3737) was prepared and characterized as a cathode material for intermediate temperature-operating solid oxide fuel cell (IT-SOFC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), and electrical property measurement were performed to study cathode performance of the material. XPS and EXAFS results proved that oxygen vacancy concentration was decreased and lattice constants of the perovskite structure material was increased by doping Fe up to 70 mol% at B-site of the crystal structure, which also extended the distance between oxygen and neighbor atom. Thermal expansion coefficient (TEC) of PSCF3737 is smaller than that of Pr0.3 Sr0.7 CoO3−δ (PSC37) due to lower oxygen vacancy concentration. PSCF3737 showed better cathode performance than PSC37. It might be due good adhesion by a smaller difference of TEC between Gd0.1 Ce0.9 O2 (CGO91) and electrode. Composite material PSCF3737-CGO91 showed better compatibility of TEC than PSCF3737. However, PSCF3737-CGO91 did not represent higher electrochemical property than PSCF3737 due to a decline of reaction sites by CGO91.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In