Full Content is available to subscribers

Subscribe/Learn More  >

Direct Numerical Simulation of Global Instability in a Hole-Tone Feedback System

[+] Author Affiliations
Kazuo Matsuura, Masami Nakano

Tohoku University, Sendai, Miyagi, Japan

Paper No. AJK2011-08034, pp. 2249-2254; 6 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


Direct computations and experiments of a hole-tone feedback system are conducted. The mean velocities of an air-jet are 8 and 10 m/s in the computations, 6–13 m/s in the experiments. The diameters of a nozzle and an end plate hole are both 50 mm, and an impingement length between the nozzle and the end plate is 50 mm. The computational results agree well with the experimental data in terms of qualitative vortical structures and a relationship between the most dominant hole-tone frequency and a jet speed. Based on the computational results of the air-jet speed of 8 m/s, a Proper Orthogonal Decomposition (POD) analysis of the whole pressure fluctuation field is conducted. The 1st and 2nd POD modes are nearly in anti-phase, and alternatively appearing helical structures are observed upstream of the end plate hole in an isosurface plot of the eigenfunctions of the modes. Dominant behaviors of vortex shedding from the end plate hole are represented by the 3rd and 4th modes. As the result, dominant variation of the pressure fluctuation field is successfully extracted by the present POD analysis.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In