Full Content is available to subscribers

Subscribe/Learn More  >

The Impact of Rib/Channel, Water and Heat Transport on Limiting Current Density

[+] Author Affiliations
Yuichiro Tabuchi, Norio Kubo

Nissan Motor Co., Ltd., Yokosuka, Japan

Paper No. FuelCell2008-65201, pp. 811-820; 10 pages
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • Denver, Colorado, USA, June 16–18, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4318-1 | eISBN: 0-7918-3822-6
  • Copyright © 2008 by ASME


Proton exchange membrane fuel cells (PEMFCs) are regarded as a promising alternative clean power source for automotive applications. Key to the acceptance of PEMFCs for automobiles are cost reduction and power density for compactness. In order to meet these requirements, further improvement of cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFC have strong effects on cell performance. In this study, the impact of Rib/Channel dimensions, heat and water transport on cell performance under high current density is investigated using the multiphase mixture model (M2 model), and the limiting current density is evaluated using a uniform test cell with 10cm2 active area and 24 straight channels. Limiting current densities were measured under different oxygen concentrations at 70°C and 70% relative humidity at both sides. In order to neglect the effect of liquid water in channels and the distribution of oxygen and hydrogen concentrations along the flow channel, large flow rates were introduced at both sides. Experimental results show a nonlinear relation between oxygen concentration in the channel and limiting current density. Numerically it is found that this nonlinear trend is caused by liquid water in the Rib region. In addition, it is also found that not only liquid water, but also heat transport and water transport through the membrane significantly affect the limiting current density. Finally, it is concluded that the combination analysis using limiting current experiments of uniform cell system and M2 model is very useful for fundamental understanding and for fuel cell design optimization.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In