0

Full Content is available to subscribers

Subscribe/Learn More  >

Predicting Phase-Change Rate in PEFC Gas Diffusion Layer

[+] Author Affiliations
Suman Basu, Chao-Yang Wang

Pennsylvania State University, University Park, PA

Ken S. Chen

Sandia National Laboratories, Albuquerque, NM

Paper No. FuelCell2008-65015, pp. 715-722; 8 pages
doi:10.1115/FuelCell2008-65015
From:
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • Denver, Colorado, USA, June 16–18, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4318-1 | eISBN: 0-7918-3822-6
  • Copyright © 2008 by ASME and U.S. Government

abstract

Water and heat are produced in the cathode catalyst layer of a polymer electrolyte fuel cell (PEFC) due to the oxygen-reduction reaction. Efficient water removal from the gas diffusion layer (GDL) to the flow channel is critical to achieve high and stable PEFC performance. Water transport and removal strongly depend on local temperature because the saturation concentration of water vapor rises rapidly with temperature, particularly in the temperature range of practical interest to PEFC applications. Detailed investigations of two-phase flow in the GDL have been reported in the literature, but not on the rate of phase change – either from liquid to vapor as in the case of evaporation or from vapor to liquid as in the case of condensation. In the present work, a two-phase, non-isothermal numerical model is used to elucidate the phase-change rate inside the cathode GDL of a PEFC. Results computed from our model enable a basic understanding of the phase-change processes occurring in a PEFC.

Copyright © 2008 by ASME and U.S. Government

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In