0

Full Content is available to subscribers

Subscribe/Learn More  >

Design, Simulation, and Control of a 100 Megawatt-Class Solid Oxide Fuel Cell Gas Turbine Hybrid System

[+] Author Affiliations
Fabian Mueller, Brian Tarroja, James Maclay, Faryar Jabbari, Jacob Brouwer, Scott Samuelsen

University of California - Irvine, Irvine, CA

Paper No. FuelCell2008-65194, pp. 701-714; 14 pages
doi:10.1115/FuelCell2008-65194
From:
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • Denver, Colorado, USA, June 16–18, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4318-1 | eISBN: 0-7918-3822-6
  • Copyright © 2008 by ASME

abstract

A 100 MW-class planar solid oxide fuel cell, synchronous gas turbine hybrid system has been designed, modeled and controlled. The system is built of 70 functional fuel cell modules each containing 10 fuel cell stacks, a blower to recirculate depleted cathode air, a depleted fuel oxidizer and a cathode inlet air recuperator with bypass. The recuperator bypass serves to control the cathode inlet air temperature while the variable speed cathode blower recirculates air to control the cathode air inlet temperature. This allows for excellent fuel cell thermal management without independent control of the gas turbine, which at this scale will most likely be a synchronous generator. In concept the demonstrated modular design makes it possible to vary the number of cells controlled by each fuel valve, power electronics module, and recirculation blower, so that actuators can adjust to variations in the hundreds of thousands of fuel cells contained within the 100 megawatt hybrid system for improved control and reliability. In addition, the modular design makes it possible to take individual fuel cell modules offline for maintenance while the overall system continues to operate. Parametric steady state design analyses conducted on the system reveal that the overall fuel-to-electricity conversion efficiency of the current system increases with increased cathode exhaust recirculation. To evaluate and demonstrate the conceptualized design, the fully integrated system was modeled dynamically in Matlab–Simulink®. Simple proportional feedback with steady state feed-forward controls for power tracking, thermal management, and stable gas turbine operation were developed for the system. Simulations of the fully controlled system indicate that the system has a high efficiency over a large range of operating conditions, decent transient load following capability, fuel and ambient temperature disturbance rejection as well as the capability to operate with a varying number of fuel cell modules. The efforts here build upon prior work and combine the efforts of system design, system operation, component performance characterization and control to demonstrate hybrid transient capability in large-scale coal synthesis gas-based applications through simulation. Furthermore, the use of a modular fuel cell system design, the use of blower recirculation, and the need for integrated system controls are verified.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In