0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Controls of a Fuel Delivery System With Dual Recirculation Lines for a PEM Fuel Cell System

[+] Author Affiliations
Jinglin He, Song-Yul Choe

Auburn University, Auburn, AL

Chang-Ouk Hong

Hyundai Rotem R&D Center, Seoul, South Korea

Paper No. FuelCell2008-65064, pp. 661-673; 13 pages
doi:10.1115/FuelCell2008-65064
From:
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • Denver, Colorado, USA, June 16–18, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4318-1 | eISBN: 0-7918-3822-6
  • Copyright © 2008 by ASME

abstract

A fuel delivery system with dual recirculation lines is investigated in this paper, which can reuse the exhausted gas from the outlet of anode flow channel. In the automotive application, the fuel delivery system regulates the hydrogen pressure and flow rate from the tank to the anode flow channel that change dynamically with load. The control objectives of fuel cell stack require that a slight pressure difference between the anode and cathode be maintained to prevent the damage of the membrane. In addition, the unconsumed hydrogen is circulated to a supply line by the recirculation lines. The fuel delivery system analyzed in this paper consists of two supply lines and two recirculation lines. The supply line with a low pressure regulator accounts for the supply of fuel at relatively low load demands. The other supply line with a flow controller starts to provide additional fuel with controllable flow rate at high load demands. The recirculation line with an ejector allows for mixing the unconsumed hydrogen with the supplied fuel. The other recirculation line with a blower is used to improve the controllability of the recirculation flow rate. Analysis of the fuel delivery system with dual recirculation lines is carried out by modeling and simulating an integrated system, where the components are modeled involving the dynamic characteristics. The major components of fuel delivery and recirculation system are an ejector, a blower, and a pressure regulator. In addition, the linearization of the integrated system is expressed in the approach of state equations to form the control problem of the system. Then the linear controllers are designed based on the decentralized proportional and integral control, and the state feed-back control. The systems with the different controllers are simulated at different operating points to evaluate their tracking performance by comparing the dynamic response curves.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In