Full Content is available to subscribers

Subscribe/Learn More  >

Investigation Into the Acoustic Streaming and Convective Cooling Phenomena During a High-Intensity Focused Ultrasound Thermal Ablation

[+] Author Affiliations
Maxim A. Solovchuk

National Taiwan University, Taipei, Taiwan

Tony W. H. Sheu

National Taiwan University; Taida Institute of Mathematical Science, Taipei, Taiwan

Marc Thiriet

University of Paris #6, Paris, France

Paper No. AJK2011-19004, pp. 2009-2017; 9 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME


The present study is aimed at predicting liver tumor temperature increase during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics-heat-fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. We also consider the energy equation for the modeling thermal conduction heat transfer. Two heat sinks are dealt with to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that the acoustic streaming effect can change the blood flow distribution in hepatic arterial branches and leads to mass flux redistribution. The effect of acoustic streaming can be used to control blood drug delivery. In the current work the realistic geometry for the blood vessel and liver was reconstructed using the MRI images. The presented results may be further used to construct a surgical planning platform for the non-invasive HIFU (High-Intensity Focal Ultrasound) tumor ablating (or cauterizing) therapy in real liver geometry on the basis of the MRI image.

Copyright © 2011 by KSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In