Full Content is available to subscribers

Subscribe/Learn More  >

Development of High Efficiency Propeller Fan for Heat-Pump Unit Using CFD and Numerical Optimization

[+] Author Affiliations
Hironobu Yamakawa, Taku Iwase, Shigehisa Funabashi

Hitachi, Ltd., Hitachinaka, Ibaraki, Japan

Kouichi Sakamoto, Yutaka Enokizu, Masahiko Gonmori

Hitachi Appliances, Inc., Tochigi, Tochigi, Japan

Paper No. AJK2011-05018, pp. 1815-1820; 6 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


We developed a high-efficiency propeller fan to reduce electric power consumption of the fan motor for outdoor heatpump units, and we developed a designing tool combining computational fluid dynamics (CFD) with multi-objective optimization techniques based on the genetic algorithm (GA). In CFD, a numerical model is calculated using commercial software based on steady state, Reynolds-averaged Navier-Stokes (RANS) and k-ε turbulent flow model. The objective functions are fan efficiency and fan noise for optimization. Fan efficiency is calculated directly from the CFD results, and fan noise is calculated using an aerodynamic noise prediction model using the relative inlet and outlet velocities of the fan blades from the CFD results. We fabricated a high-efficiency propeller fan characterized with curled trailing edge tips from Pareto optimal solutions. The experimental results from the performance of the fan showed the developed fan was more efficient than conventional fan.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In