0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Unsteady Flows Through a Francis Turbine Runner Using Vortex Methods

[+] Author Affiliations
Baoshan Zhu, Longbu Wang, Jie Zhai, Shuliang Cao

Tsinghua University, Beijing, China

Paper No. AJK2011-05009, pp. 1751-1761; 11 pages
doi:10.1115/AJK2011-05009
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME

abstract

A grid-free numerical scheme is provided for the solution of unsteady flow in the hydraulic turbines. The Lagrangian vortex method is utilized to evaluate the convection and stretch of the vorticity, and the boundary element method is used to solve the Neumann problem to define the potential flow. The no-slip boundary condition is satisfied by generating vortex sticks at the solid surface. A semi-analytical regularization technique is applied to evaluate the singular boundary surface integrals of the potential velocity and its gradients accurately. The fast multipole method (FMM) has been extended to evaluate the velocity and velocity gradients induced by the discretized vortex blobs in the Lagrangian vortex method. The successful simulation for the unsteady flow through a hydraulic turbine’s runner has manifested the effectiveness of the proposed method.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In