0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Electrochemical Reaction in Reconstructed Three-Dimensional LSM/YSZ Composite Cathode

[+] Author Affiliations
Tadahiro Nakagawa, Naoki Shikazono, Nobuhide Kasagi

University of Tokyo, Tokyo, Japan

Paper No. FuelCell2008-65027, pp. 123-131; 9 pages
doi:10.1115/FuelCell2008-65027
From:
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology
  • Denver, Colorado, USA, June 16–18, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4318-1 | eISBN: 0-7918-3822-6
  • Copyright © 2008 by ASME

abstract

In the present study, a novel computational scheme for the assessment of the activation polarization of LSM/YSZ composite cathodes is proposed. The scheme consists of modeling techniques of three-dimensional microstructures and an evaluation method of electrochemical characteristics. Two modeling techniques of microstructures are employed, i.e. the stochastic reconstruction (SR) method and the random packing model (RPM). In the SR method, the 3-D structure is reconstructed statistically from the two-point correlation function of the cross-sectional image of SEM-EDX. In RPM, on the other hand, spherical LSM and YSZ particles are randomly packed in the computational domain. This model is mainly used for the parametric survey, because control parameters used in the model have good correspondence to the parameters used in the actual cell manufacturing process. The lattice Boltzmann method coupled with the Butler-Volmer equation is employed for the detailed assessment of the electrochemical characteristics inside the constructed 3-D cathode microstructures. The oxygen diffusion and the electronic and ionic conductions are calculated simultaneously, and coupled with the charge transfer at the three-phase boundary (TPB) using the Butler-Volmer equation. As a result, potential, polarization and current density distributions are fully investigated. The results from the SR method reveal that the cathode sintered at 1150 °C shows the smaller overpotential than the cathodes sintered at 1200 and 1250 °C. The RPM results show that particle diameter and its standard deviation as well as volume fraction of species have large effects on the cathode performance.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In