Full Content is available to subscribers

Subscribe/Learn More  >

A Full Eulerian Finite Difference Method for Hyperelasic Particles in Fluid Flows

[+] Author Affiliations
Kazuyasu Sugiyama, Satoshi Ii, Yoichiro Matsumoto

The University of Tokyo, Tokyo, Japan

Shintaro Takeuchi

Osaka University, Suita, Osaka, Japan

Shu Takagi

The University of Tokyo, Tokyo; RIKEN, Wako, Saitama, Japan

Paper No. AJK2011-04001, pp. 1561-1567; 7 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


A full Eulerian finite difference method has been developed for solving a dynamic interaction problem between Newtonian fluid and hyperelastic material. It facilitates to simulate certain classes of problems, such that an initial and neutral configuration of a multi-component geometry converted from voxel-based data is provided on a fixed Cartesian mesh. A solid volume fraction, which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for incompressible hyperelastic materials. The present Eulerian approach is confirmed to well reproduce the material deformation in the lid-driven flow and the particle-particle interaction in the Couette flow computed by means of the finite element method. It is applied to a Poiseuille flow containing biconcave neo-Hookean particles. The deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In