Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Porous Medium Internal Combustion Engine

[+] Author Affiliations
Arash Mohammadi, Ali Jazayeri, Masoud Ziabasharhagh

K. N. Toosi University, Tehran, Tehran, Iran

Paper No. AJK2011-03079, pp. 1521-1529; 9 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


Porous media (PM) has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power range, the extension of the lean flammability limits, and the low emissions of pollutants. Future internal combustion (IC) engines should have had minimum emissions level, under possible lowest fuel consumption permitted at all operational conditions. This may be achieved by realization of homogeneous combustion process in engine. In this paper, possibility of using PM in direct injection IC engine, with cylindrical geometry for PM to have homogeneous combustion, is examined. A three-dimensional numerical model for the regenerative engine is presented in this study based on a modified version of the KIVA-3V code that is very popular for engine simulation. Methane as a fuel is injected directly inside hot PM that is assumed mounted in cylinder head. Very lean mixture is formed and volumetric combustion occurs in PM. Mixture formation, pressure, temperature distribution in both phases of PM and in-cylinder fluid with the production of pollutants CO and NO, in the closed part of the cycle is studied.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In