Full Content is available to subscribers

Subscribe/Learn More  >

Application of an Arbitrary Lagrangian Eulerian Method to Describe High Velocity Gas-Particle Flow Behavior

[+] Author Affiliations
D. M. Fox

U.S. Army Research Laboratory, Aberdeen Proving Ground, MD

J. S. Lee

Yonsei University, Seoul, Korea

Paper No. AJK2011-03075, pp. 1507-1514; 8 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME


Novel computational and small-scale experimental investigations were performed in order to better understand the high velocity flow behavior of gas-particle mixtures. The motion of solid objects impacted by the flow of the mixtures was measured by use of high-speed digital video photography. Computations were performed by use of an arbitrary Lagrangian Eulerian (ALE) treatment in a nonlinear finite element code. Constitutive models for description of the solid component of the gas-particle blend were developed based on quasi-statically determined test results. It was observed that there was very close agreement between experimental and computational results and that it was possible to accurately predict the high velocity flow behavior of the gas-particle mixture using quasi-statically determined constitutive models.

Copyright © 2011 by KSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In