Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Impinging Jet Into a Rigid Porous Layer

[+] Author Affiliations
Marcelo J. S. de Lemos

Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil

Paper No. AJK2011-03074, pp. 1495-1506; 12 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME


This work shows simulations for a turbulent jet impinging against a flat plane covered with a layer of permeable and thermally conducting material. Distinct energy equations are considered for the porous layer attached to the wall and for the fluid that impinges on it. Parameters such as Reynolds number, porosity, permeability, thickness and thermal conductivity of the porous layer are varied in order to analyze their effects on the local distribution of Nu. The macroscopic equations for mass, momentum and energy are obtained based on volume-average concept. The numerical technique employed for discretizing the governing equations was the control volume method with a boundary-fitted non-orthogonal coordinate system. The SIMPLE algorithm was used to handle the pressure-velocity coupling. Results indicate that inclusion of a porous layer eliminates the peak in Nu at the stagnation region. For highly porous and highly permeable material, simulations indicate that the integral heat flux from the wall is enhanced when a thermally conducting porous material is attached to the wall.

Copyright © 2011 by ASME
Topics: Turbulence



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In