Full Content is available to subscribers

Subscribe/Learn More  >

A New Hybrid RANS/LES Modeling Methodology for CFD Applications

[+] Author Affiliations
Mohammad F. Alam, D. Keith Walters, David S. Thompson

Mississippi State University, Mississippi State, MS

Paper No. AJK2011-02013, pp. 1215-1226; 12 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME


The primary weakness of current hybrid RANS/LES (HRL) models lies in the treatment of the “transition zone,” where the value and the physical interpretation of the eddy viscosity changes from LES to RANS, or vice versa. In order to address this problem, the initial version of a new HRL modeling methodology has been developed that incorporates two separate turbulent stress parameters (one from the LES model and the other from the RANS model). In this paper, the viability of the new model is demonstrated by predictions of the flow over a backward facing step, which is one of the canonical test cases used for the validation of turbulence models. The simulation results of backward facing step flow at ReH = 37,000 provided by Menter’s Shear Stress Transport (SST) model, a new version of Detached Eddy Simulation (DES) i.e. delayed DES model, and the new model are compared with experiments. Mesh sensitivity of the models is also studied employing two different types of mesh, in order to test the wide applicability of the HRL models in various realistic flow simulations. Pressure and skin friction distributions and mean velocity profiles obtained with the new HRL model show improved agreement with the experimental measurements versus DES, and less sensitivity to the mesh details. Turbulent kinetic energy profiles of both the new model and the RANS model show qualitatively good agreement with experiments.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In