0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a 2-D Flow Solver on Hybrid Unstructured and Adaptive Cartesian Meshes

[+] Author Affiliations
Min Kyu Jung, Oh Joon Kwon

Korea Advanced Institute of Science and Technology, Daejeon, Korea

Paper No. AJK2011-01008, pp. 1079-1087; 9 pages
doi:10.1115/AJK2011-01008
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME

abstract

In the present study, a two-dimensional hybrid flow solver has been developed for the accurate and efficient simulation of steady and unsteady flow fields. The flow solver was cast to accommodate two different topologies of computational meshes. Triangular meshes are adopted in the near-body region such that complex geometric configurations can be easily modeled, while adaptive Cartesian meshes are utilized in the off-body region to resolve the flow more accurately with less numerical dissipation by adopting a spatially high-order accurate scheme and solution-adaptive mesh refinement technique. Adaptive Cartesian meshes can be generated automatically and allow to handle data efficiently via quad-tree data structures. A chimera mesh approach has been employed to link the two flow regimes adopting each mesh topology. A second-order accurate vertex-centered scheme and a 3rd - or 5th -order accurate cell-centered WENO scheme have been utilized in the near-body region and in the off-body region, respectively. Validations were made for the unsteady inviscid vortex convection and the steady and unsteady turbulent flows over an NACA0012 airfoil, and the results were compared with other computational and experimental results.

Copyright © 2011 by KSME
Topics: Flow (Dynamics)

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In