Full Content is available to subscribers

Subscribe/Learn More  >

Transport Phenomena and Their Effect on Weld Quality in GMA Welding of Aluminum Alloys

[+] Author Affiliations
H. Guo, H. L. Tsai

University of Missouri at Rolla, Rolla, MO

P. C. Wang

General Motors Corporation, Warren, MI

Paper No. HT-FED2004-56733, pp. 1075-1084; 10 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Gas metal arc welding (GMAW) of aluminum alloys has recently become popular in the auto industry to increase fuel efficiency of a vehicle. In many situations, the weld is short (say, less than two inches) and the “end effects” become very critical in determining the strength of the weld. At the beginning stage of the welding, when the metal is still “cold”, which is frequently called cold weld, limited weld penetration occurs. On the other hand, at the ending stage of the welding, a “crater” is formed involving micro-cracks and micro-pores. Both the cold weld and the crater can significantly decrease the strength of the weld and are more severe for aluminum alloys as compared to steels. Hence, there are strong needs to improve the GMAW process in order to reduce or eliminate the aforementioned end effects. In this paper, both mathematical modeling and experiments have been conducted to study the beginning stage, ending stage, as well as the quasi-steady-state stage of GMA welding of aluminum alloys. In the modeling, a three-dimensional model using the volume-of-fluid (VOF) method is employed to handle the free surfaces associated with the impingement of droplets into the weld pool and the weld pool dynamics. Transient weld pool shapes and the distributions of temperature and velocity in the weld pool are calculated. The predicted solidified weld bead shapes, including weld penetration and/or reinforcement, are in agreement with experimental results for welds in the aforementioned three stages. It was found that the thickness of the molten weld pool is smaller and there is no vortex developed, as compared to steel welding. The lack of penetration in cold weld is due to the lack of pre-heating by the welding arc. Three techniques are proposed and validated numerically to improve weld penetration by increasing the energy input at the beginning stage of the welding. The crater formation is caused by rapid solidification of the weld pool when the welding arc is terminated. By reducing welding current and reversing the welding direction before terminating the arc, the weld pool is maintained “hot” for a longer time allowing melt flow to fill-up the crater. This method is validated experimentally and numerically to be able to eliminate the formation of the crater and the associated micro-cracks.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In