Full Content is available to subscribers

Subscribe/Learn More  >

The Development and Implementation of Model-Based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-Slip

[+] Author Affiliations
Soo-Jin Jeong, Jung-Kwon Park, Ho-Kil Lee, Se-Doo Oh

Korea Automotive Technology Institute, Chunan, Chungnam, Korea

Woo-Seung Kim

Hanyang University, Ansan, Kyeonggi, Korea

Paper No. AJK2011-23011, pp. 905-913; 9 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME


The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia (NH3 ) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and NH3 slip reduction in the SCR system. This paper investigated NOx and NH3 emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and O2 for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm cannot estimate NH3 absorbed on the catalyst Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated based on the analytic model for SCR system. The channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

Copyright © 2011 by KSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In