Full Content is available to subscribers

Subscribe/Learn More  >

Vapor Transport Controlled Process Models for AlN Bulk Sublimation Growth

[+] Author Affiliations
Bei Wu, Hui Zhang

State University of New York at Stony Brook, Stony Brook, NY

Paper No. HT-FED2004-56564, pp. 1035-1043; 9 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Sublimation vapor transport method is a widely used technique for the production of optoelectronic materials, such as AlN single crystals. Inductively heated method is most commonly used in high temperature materials processing. In the literature, a one-step reaction with two vapor species, i.e. aluminum (Al) vapor and nitrogen (N2 ) gas, is usually assumed and a diffusion-controlled growth mechanism is used with thermodynamic equilibrium calculations. In the growth experiments, crystal growth may be in the kinetic controlled region, the interplay between surface kinetics and vapor transport is important. Temperature field with inductively heated method will be simulated in this paper. Afterwards, three growth models are proposed. One model is called the traditional model assuming thermodynamic equilibrium and diffusion as the rate-limiting process, and two other models are developed based on equilibrium partial pressure of either aluminum vapor or reaction nitrogen gas. The predicted growth rates by three models are compared. The advantage and disadvantage of different models are discussed.

Copyright © 2004 by ASME
Topics: Vapors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In