Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Turbulent Simulation and Analysis of Pressure Fluctuation for High Temperature and High Pressure Centrifugal Pump

[+] Author Affiliations
Shuhong Liu, Yujun Sha, Yulin Wu

Tsinghua University, Beijing, China

Baogang Wang

KSB Aktiengesellschaft, Shanghai, China

Paper No. AJK2011-22053, pp. 731-736; 6 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME


The pressure fluctuation in the internal flow passage of centrifugal pump is a key factor affecting the stability of the hydraulic system, especially working at conditions of high temperature and pressure. In this paper, RNG k–ε turbulent model is adopted to simulate the unsteady flow through the whole flow passage of centrifugal pump working at temperature T = 300 °C and high pressure P = 280 bar. The pressure fluctuation is calculated at the predefined reference points in the different planes. By analyzing the results, it is found that: 1) the rotor-stator interaction between impeller and diffuser is the main cause for pressure fluctuation; 2) the dominant frequency of pressure fluctuation in the flow passage of impeller is the diffuser passing frequency; 3) the dominant frequency at the points of casing wall is almost the same, and the maximum amplitude is relatively small.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In