0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Major Diameter Solid Particle on the Double-Channel Pump Performance

[+] Author Affiliations
Yi Li, Qiaoling Cui, Zuchao Zhu, Baoling Cui

Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China

Zhaohui He

Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd., Hangzhou, Zhejiang, China

Paper No. AJK2011-22033, pp. 665-672; 8 pages
doi:10.1115/AJK2011-22033
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME

abstract

Based on mixture model, the numerical simulation of solid-liquid two-phase flow in a double channel pump (Specific speed ns = 81) was carried out. The effects of particle diameter, particle volume fraction and flow rate on solid volume concentration distribution, relative velocity distribution and abrasion characteristics were studied. The results reveal that in the impeller, more particles concentrate at the nut of the shaft end and the edge of the impeller outlet. So those regions are worn seriously. The abrasive types are sliding wear on the impeller outlet edge and impact wear on the nut respectively. In the wall of the volute, the concentrated areas of particles move round the anticlockwise direction when the mixture flow rate is larger. The reason is the mixture velocity is larger as the flow rate increases, and meanwhile the centrifugal force and gravity force are invariable. So the particles move round the impeller rotational direction consequently. In the volute, particles concentrate on the tongue and wall region, especially on the sections I, II, V and VII. So the areas are easily worn out. The abrasive type is the heavy sliding wear in the volute wall. Numerical simulation results are consistent with the actual situation. It follows that the calculating method is feasible.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In