Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Surface Roughness and Favorable Pressure Gradient on Turbulent Boundary Layers

[+] Author Affiliations
Ju Hyun Shin, Seung Jin Song

Seoul National University, Seoul, Korea

Paper No. AJK2011-22020, pp. 611-619; 9 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by KSME


Rough wall turbulent boundary layers subjected to pressure gradient have engineering interest for many fluid machinery applications. A number of investigations have been made to understand surface roughness and pressure gradient effects on turbulent boundary layer characteristics, but separately. In this paper, turbulent boundary layers over a flat plate with surface roughness and favorable pressure gradient (FPG) are experimentally investigated. Boundary layers in different streamwise locations were measured using boundary layer type hot-wire anemometry. Rough wall zero pressure gradient (ZPG) turbulent boundary layers were also measured to compare the result from the investigation. The surface roughness was applied by attaching sandpapers on the flat plate. The magnitude of surface roughness is representative of land-based gas turbine compressor blade. Pressure gradient was adjusted using movable endwall of the test section. Results from the measurement show characteristics of the turbulent boundary layer growth affected by both surface roughness and favorable pressure gradient.

Copyright © 2011 by KSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In