Full Content is available to subscribers

Subscribe/Learn More  >

Industry-University Collaborative Project on Numerical Predictions of Cavitating Flows in Hydraulic Machinery: Part 1—Benchmark Test on Cavitating Hydrofoils

[+] Author Affiliations
Chisachi Kato

The University of Tokyo, Tokyo, Japan

Paper No. AJK2011-06084, pp. 445-453; 9 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


Through an industry-university collaborative project, extensive benchmark studies have been made for numerical prediction of cavitating flows around two-dimensional Hydrofoils: Clark-Y 11.7% and NACA0015. The emphases are placed on the ability of present cavitation models to predict the breakdown characteristics for these hydrofoils. The benchmarking was done for a light and a moderate loading condition of these hydrofoils at a chord-based Reynolds number in the order of 106 . Four commercial CFD flow solvers, ANSYS CFX, ANSYS Fluent, and STAR-CCM+, and SCRYU/Tetra, along with four open-source or in-house flow solvers in universities participated in this benchmark. All the cavitation models, except one, implemented in these flow solvers are based on an assumption of homogenous media of one fluid, for which inception, growth, decay and destruction of cavitation are expressed by density change of the mixture fluid composed of liquid and gas phases. They differ with each other in how they determine the mixture fluid density and can be categorized into of barotropic type or of source-sink type. Despites these differences in the cavitation models themselves and differences in the Navier-Stokes solvers, turbulence models and computational grids, the results of the benchmark show a consistent trend of discrepancy between the predicted and measured breakdown characteristics. Namely, none of the cavitation models is able to predict sudden drop of the lift coefficient near the breakdown point confirmed in the measured characteristics. The lift coefficients predicted by all the cavitation models show a gradual decrease with decreasing cavitation number. This discrepancy between the predicted and measured breakdown characteristics is most prominent at the higher loading condition for NACA0015. But, it is consistently confirmed for the other cases investigated in this benchmark. The difference seems to be the results of under prediction of the cavity length, which probably comes from an intrinsic limitation associated with a cavitation model based on an assumption of homogeneous media of one fluid.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In