Full Content is available to subscribers

Subscribe/Learn More  >

Condensate Retention Model for Plain-Fin Heat Exchangers

[+] Author Affiliations
A. I. ElSherbini, A. M. Jacobi

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. HT-FED2004-56559, pp. 203-210; 8 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


A model has been developed for predicting the amount of condensate retained as drops on the air-side of heat exchangers operating under dehumidifying conditions. For a coil with a given surface wettability, characterized by the advancing contact angle, the maximum diameter for a retained drop is obtained from a balance between gravitational and surface tension forces. A logarithmic function is used to describe the size-distribution of drops on fins, based on the fraction of fin-area covered by liquid. The volumes of individual drops are calculated by a geometric method for approximating the three dimensional shapes of drops on vertical and inclined surfaces. The total volume of condensate accumulated on a coil is then found by multiplying the size-distribution and volume functions and integrating over all drop diameters. The model is successful in predicting measurements by other researchers of the mass of condensate retained on plain-fin heat exchangers.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In