0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of the Pump-Circuit Acoustic Coupling on the Blade-Passing Frequency Perturbations

[+] Author Affiliations
Jens Keller, Raúl Barrio, Jorge Parrondo

Universidad de Oviedo, Gijón, Asturias, Spain

Joaquín Fernández

Universidad de Extremadura, Badajoz, Extramadura, Spain

Javier Pérez

Siemens España SA, Madrid, Spain

Paper No. AJK2011-06071, pp. 387-396; 10 pages
doi:10.1115/AJK2011-06071
From:
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by ASME

abstract

Centrifugal pumps are a source of pressure and flow rate perturbations in hydraulic pumping systems. In particular, a significant excitation is usually induced at the blade-passing frequency and harmonics as a consequence of the fluid-dynamic interaction between the rotor and the stator. The magnitude of this excitation is very dependent on the internal geometry of the pump and on its point of operation, but it depends also on the acoustic response to the perturbations of the hydraulic network. The induced and transmitted perturbations can be either amplified or reduced depending on the pump-circuit acoustic coupling, and thus they can lead to excessive levels of noise and vibration under certain conditions. The purpose of the present investigation is the theoretical and experimental characterization of the perturbations induced in a laboratory pumping system, as a function of the acoustic impedance of the pipelines. For different operation points of the pump, the blade-passing frequency impedance is changed by varying the speed of rotation and, additionally, by modifying a dead-end region of the hydraulic system (that is, in the absence of net flow through it). For the theoretical calculations an acoustic model, based on matrix formulation, is applied to obtain the influence of different acoustic impedances of the suction side on the pressure fluctuations at the pump. Test measurements with a fast-response piezoelectric pressure transducer which is situated at the tongue region of the pump under the same system configurations confirm the significant effect of the pump-circuit acoustic coupling on the pressure perturbations.

Copyright © 2011 by ASME
Topics: Acoustics , Pumps , Blades , Circuits

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In