Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Influence of Pipe Length on Cavitation Surge

[+] Author Affiliations
Yuka Iga, Hayato Nishitanaka

Tohoku University, Sendai, Miyagi, Japan

Yoshida Yoshiki

Japan Aerospace Exploration Agency, Kakuda, Miyagi, Japan

Paper No. AJK2011-06066, pp. 351-357; 7 pages
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
  • ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
  • Hamamatsu, Japan, July 24–29, 2011
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4440-3
  • Copyright © 2011 by JSME


Generally, in boundary condition of numerical simulation of internal flow, flow velocity is fixed in the inlet boundary and static pressure is fixed in the outlet boundary or the inverse condition, which is supposed that upstream and downstream pipes and the uniform flows inside the pipes extend infinitely from the boundaries. Therefore, a numerical simulation of influence of pipe length of fluid machinery cannot be realized by changing a boundary position of the computational region. In the present study, a boundary condition which is taking into account a pipe length is used to numerical simulation of unsteady cavitation in three-blade cyclic cascade, where generalized unsteady Bernoulli equation is adapted to one dimensional region from a upstream tank to the inlet boundary. In the study, cavitation surge frequencies reproduced in the present study are compared with empirical and theoretical characteristics of cavitation surge frequencies. Then, it shows good agreement with empirical frequency of cavitation surge although it does not take into account of the system such as pipe length. On the other hand, the theoretical frequency, which takes into account of the system, predicts a value which is less than half of the present numerical result.

Copyright © 2011 by JSME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In