Full Content is available to subscribers

Subscribe/Learn More  >

On the Coupling of Designer Experience and Modularity in the Aerothermal Design of Turbomachinery

[+] Author Affiliations
Jerome P. Jarrett, Tiziano Ghisu, Geoffrey T. Parks

University of Cambridge, Cambridge, UK

Paper No. GT2008-50131, pp. 2101-2110; 10 pages
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 6: Turbomachinery, Parts A, B, and C
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4316-1 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME


The turbomachinery aerodynamic design process is characterized both by its complexity and the reliance on designer experience for success. Complexity has led to the design being decomposed into modules; the specification of their interfaces is a key outcome of preliminary design and locks-in much of the final performance of the machine. Yet preliminary design is often heavily influenced by previous experience. While modularity makes the design tractable, it complicates the appropriate specification of the module interfaces to maximize whole-system performance: coupling of modularity and designer experience may reduce performance. This paper sets out to examine how such a deficit might occur and to quantify its cost in terms of efficiency. Two disincentives for challenging decomposition decisions are discussed. The first is where tried-and-tested engineering “rules of thumb” accord between modules: the rational engineer will find alluring a situation where each module can be specified in a way that maximizes its efficiency in isolation. The second is where there is discontinuity in modeling fidelity, and hence difficulty in accurately assessing performance exchange rates, between modules. In order to both quantify and reduce the potential cost of this coupling we have recast the design problem in such a way that what were previously module interface constraints become key system design variables. An example application of our method to the design of a generic turbofan core compression system is introduced. It is shown that nearly 1 percentage point equivalent compressor adiabatic efficiency can be saved.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In