Full Content is available to subscribers

Subscribe/Learn More  >

A High Performance Semi-Passive Cooling System: The Pulse Thermal Loop

[+] Author Affiliations
Mark M. Weislogel, Michael A. Bacich

Portland State University, Portland, OR

Paper No. HT-FED2004-56457, pp. 145-154; 10 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Over the past decade, the search for and development of high performance thermal transport systems for a variety of cooling and thermal control applications have intensified. One approach employs a new semi-passive oscillatory heat transport system called the Pulse Thermal Loop (PTL). The PTL, which has only recently begun to be characterized, exploits large pressure differentials from coupled evaporators to force (pulse) fluid through the system. Driving pressures of over 1.8MPa (260psid) have been demonstrated. Other passive cooling systems, such as heat pipes and Loop Heat Pipes, are limited by capillary driving forces, typically less than 70kPa (10psid). Large driving forces can be achieved by a mechanically pumped loop, however, at the expense of increased power consumption, increased total mass, and increased system cost and complexity. The PTL can be configured in either active or semi-passive modes, it can be readily designed for large ∼ O(100kW) or small ∼ O(10W) heat loads, and it has a variety of unique performance characteristics. For low surface tension dielectric fluids such as R-134a, the PTL system has over a 10-fold heat carrying capacity in comparison to high performance heat pipes. Data accumulated thus far demonstrate that the PTL can meet many of the requirements of advanced terrestrial and spacecraft cooling systems: a system that is robust, ‘semi-passive,’ high flux, and offers high heat transport thermal control while remaining flexible in design, potentially lightweight, and cost competitive.

Copyright © 2004 by ASME
Topics: Cooling systems



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In