Full Content is available to subscribers

Subscribe/Learn More  >

Maximum Power Extraction From a Hot Stream in the Presence of Phase Change Under Limiting Collecting Temperatures

[+] Author Affiliations
Juan C. Ordonez, Sheng Chen

Florida State University, Tallahassee, FL

Paper No. HT-FED2004-56398, pp. 113-120; 8 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


In this paper we consider the fundamental problem of maximizing the power extraction from a hot stream when the collecting stream experiences a phase change and there are limits imposed by the materials on the operating temperatures. It constitutes an extension of [4] where it was pointed out the existence of an optimal mass flow rate ratio of the hot stream to the collecting stream. In this work, we study the effects of the restrictions imposed by limiting temperatures on the spatial configuration, power extraction and the optimal matching of the two streams. An optimal hot-stream-to-collecting-stream mass flow rate ratio can be found when the collecting stream experiences a phase change while in contact with the hottest section of the hot stream. Associated to the optimal mass flow rate ratio there is also an optimal heat exchanger area allocation. The effects of several operating parameters on the optimal configuration are documented. This paper constitutes an illustration of how thermodynamic optimization leads to the discovery of system structure (constructal theory [1]).

Copyright © 2004 by ASME
Topics: Temperature



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In