Full Content is available to subscribers

Subscribe/Learn More  >

Shakedown Analysis of Offshore Platform Under Varied Combined Loading

[+] Author Affiliations
Qiyi Zhang, Sheng Dong

Ocean University of China, Qingdao, China

Paper No. OMAE2011-49428, pp. 907-911; 5 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME


Based on static Melan shakedown theorem, an elastic-plastic finite element method is presented to analyze the shakedown of saturated undrained foundation due to varied combined loadings, and the shakedown loadings under different patterns of loading combination are compared. At the same time, a comparison is given between the shakedown failure envelop under varied combined loading and the failure envelop of ultimate bearing capacity under static equilibrium, and it is found that the shakedown loading under varied combined loading is less than the ultimate bearing capacity under combined loading.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In