Full Content is available to subscribers

Subscribe/Learn More  >

Caisson Capacity in Clay: VHM Resistance Envelope: Part 3—Extension to Shallow Foundations

[+] Author Affiliations
S. Kay

Fugro Offshore Geotechnics, Leidschendam, The Netherlands

E. Palix

Fugro Offshore Geotechnics, Paris, France

Paper No. OMAE2011-49077, pp. 789-798; 10 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME


Suction embedded caissons are efficient and economic solutions to anchor floating structures. A more recent caisson application is to support seafloor structures such as manifolds, PLEMs, pumps, etc. For a deepwater hydrocarbon field, many types of seafloor structures are required, each with their own characteristics and slightly different design. Caisson designs increasingly use resistance envelope methodology. This eliminates non-linear 3D FE analyses (except for assessing responses or soil reactions), and facilitates probabilistic and optimisation analyses. In general, there is a requirement for a reliable method of assessing caisson capacity under general VHM load. Resistance envelope equations for “deep” circular caissons (1.5 < L/D < 6) have been presented by Kay and Palix (2010) for a wide range of soil undrained shear strength profiles. This paper extends the study to cover near-surface caissons (i.e. 0 ≤ L/D ≤ 1.5). As in previous studies, a quasi 3D non-linear finite element program (HARMONY) was the primary numerical analysis tool. Three soil shear strength profiles were investigated for 13 caisson embedment ratios. In the range 0 ≤ L/D ≤ 1.5, VHM envelope shapes transform from a “scallop” at L/D ≈ 0 into a “tongue” above a critical caisson embedment ratio (L/D)crit of about 0.5 The equations originally developed for the rotated ellipse/ellipsoid (i.e. “tongue”-shaped envelope) in Kay and Palix (2010) for L/D ≤ 1.5 have been extended for (L/D)crit ≥ L/D. All parameters are simple functions of L/D and soil shear strength profile. Major limitations and assumptions made were (a) foundation-soil tension was permitted and (b) no internal scoop failure (i.e. within the soil plug inside the caisson) was possible. These are important for low L/D: both may adversely affect VHM resistance.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In