Full Content is available to subscribers

Subscribe/Learn More  >

Heat and Mass Transfer in a CVD Optical Fiber Coating Process

[+] Author Affiliations
Wei Huang, Wilson K. S. Chiu

University of Connecticut, Storrs, CT

Paper No. HT-FED2004-56320, pp. 935-938; 4 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


In this paper, we study the chemical vapor deposition (CVD) process used to hermetically coat optical fibers during draw. Temperature is calculated by coupling radiation and convection heat transfer by the reactor walls and gas flow with a radially-lumped heat transfer model for the moving optical fiber. Multi-component species diffusion is modeled using the Maxwell-Stefan equations. Gas-phase reaction kinetics is modeled using a 2-step chemical kinetics mechanism derived from RRKM theory with detailed kinetics data compiled from literature. Surface reaction kinetics are described using collision theory in which a sticking coefficient is used as an empirical parameter to predict surface reactions. A parameter study is carried out with various optical fiber inlet temperature and drawing speed, and validated with experiment results.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In