0

Full Content is available to subscribers

Subscribe/Learn More  >

Selective Roughness in the Boundary Layer to Suppress Flow-Induced Motions of Circular Cylinder at 30,000<Re<120,000

[+] Author Affiliations
Hongrae Park, Michael M. Bernitsas, R. Ajith Kumar

University of Michigan, Ann Arbor, MI

Paper No. OMAE2011-50302, pp. 715-724; 10 pages
doi:10.1115/OMAE2011-50302
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME

abstract

A passive control means to suppress flow-induced motions (FIM) of a rigid circular cylinder in the TrSL3, high-lift, flow regime is formulated and tested experimentally. The method developed uses passive turbulence control (PTC) consisting of selectively located roughness on the cylinder surface with thickness about equal to the boundary layer thickness. The map of “PTC-to-FIM”, developed in previous work, revealed robust zones of weak suppression, strong suppression, hard galloping, and soft galloping. PTC has been used successfully to enhance FIM for hydrokinetic energy harnessing using the VIVACE Converter. The same technology revealed the potential to suppress FIM to various levels. The map is flow-direction dependent. In this paper, the “PTC-to-FIM” map is used to guide development of FIM suppression devices that are flow-direction independent and hardly affect cylinder geometry. Experiments are conducted in the Low Turbulence Free Surface Water Channel of the University of Michigan on a rigid, horizontal, circular cylinder, suspended on springs. Amplitude and frequency measurements and broad field-of-view visualization reveal complex flow structures and their relation to suppression. Several PTC designs are tested to understand PTC direction, roughness, thickness, and coverage. Gradual modification of PTC parameters, leads to improved suppression and evolution of a design reducing the VIV synchronization range, fully suppressing VIV in a wide range, and reducing the maximum occurring near the system’s natural frequency by about 60% compared to the maximum amplitude of the smooth cylinder.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In