Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Vortex-Induced Vibration (VIV) of a Circular Cylinder in Oscillatory Flow

[+] Author Affiliations
Ming Zhao

University of Western Sydney, Penrith, NSW, Australia

Liang Cheng, Tongming Zhou

The University of Western Australia, Crawley, WA, Australia

Paper No. OMAE2011-50074, pp. 597-603; 7 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME


Vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is investigated numerically in this study. The incompressible Reynolds-Averaged Navier-Stokes equations governing fluid flow around a circular cylinder are solved using Arbitrary Langrangian-Eulerian (ALE) scheme and Petrov-Galerkin finite element method. The equation of motion is solved for the displacements of the cylinder both in the inline and cross-flow directions. The numerical model is firstly validated against the experimental results of one-degree-of-freedom VIV in cross-flow direction. It is found that both VIV frequency and amplitude vary with reduced velocity for a fixed KC number. In most of the simulated cases the vibration comprises of multiple frequencies of different amplitudes. Each frequency component is multiple times of the frequency of the oscillatory flow. Two-degree-of-freedom VIV is investigated with the same parameters used in the one-degree-of-freedom case. By examining the XY-trajectory of the vibration, it if found that the vibration follows different trajectory for different KC numbers or reduced velocities.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In