0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Oscillatory Flow Past Four Cylinders in Square Arrangement for Pitch Ratio Equal to 4

[+] Author Affiliations
P. Anagnostopoulos, Ch. Dikarou, S. A. Seitanis

Aristotle University of Thessaloniki, Thessaloniki, Greece

Paper No. OMAE2011-49578, pp. 457-466; 10 pages
doi:10.1115/OMAE2011-49578
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME

abstract

The results of a numerical study of the viscous oscillating flow around four circular cylinders are presented herein, for a constant frequency parameter, β, equal to 50, and Keulegan-Carpenter numbers, KC, ranging between 0.2 and 10. The cylinders were placed on the vertices of a square, whose two sides were perpendicular and two parallel to the oncoming flow, for a pitch ratio, P/D, equal to 4. The finite-element method was employed for the solution of the Navier-Stokes equations, in the formulation where the stream function and the vorticity are the field variables. The streamlines and the vorticity contours generated from the solution were used for the flow visualization. When the Keulegan-Carpenter number is lower than 4, the flow remains symmetrical with respect to the horizontal axis of symmetry of the solution domain and periodic at consecutive cycles. As KC increases to 4 the flow becomes aperiodic in different cycles, although symmetry with respect to the horizontal central line of the domain is preserved. For KC equal to 5 asymmetries appear intermittently in the flow, which are eventually amplified as KC increases still further. These asymmetries, in association with the aperiodicity at different cycles, lead to an almost chaotic configuration, as KC grows larger. For characteristic cases the flow pattern and the traces of the hydrodynamic forces are presented. In addition, the mean and r.m.s. values of the in-line and transverse forces and the hydrodynamic coefficients of the inline force were evaluated for the entire range of Keulegan-Carpenter numbers examined.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In