Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Rotational Friction on the Stability of Short-Tailed Fairings Suppressing Vortex-Induced Vibrations

[+] Author Affiliations
Gustavo R. S. Assi, Julia R. H. Rodrigues

University of São Paulo, São Paulo, Brazil

Peter W. Bearman

Imperial College London, London, UK

Michael A. Tognarelli

BP America Production Company, Houston, TX

Paper No. OMAE2011-49522, pp. 389-394; 6 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME


Experiments have been carried out on a free-to-rotate short-tail fairing fitted to a rigid length of circular cylinder to investigate the effect of rotational friction on the stability of this type of VIV suppressor. Measurements of the dynamic response are presented for models with low mass and damping which are free to respond in the cross-flow and streamwise directions. It is shown how VIV can be reduced if the fairing presents a rotational friction above a critical limit. In this configuration the fairing finds a stable position deflected from the flow direction and a steady lift force appears towards the side the fairing has deflected. The fluid-dynamic mechanism is very similar to that observed for a free-to-rotate splitter plate of equivalent length.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In