Full Content is available to subscribers

Subscribe/Learn More  >

A Double Birkhoff Wake Oscillator for the Modeling of Vortex-Induced Vibration

[+] Author Affiliations
R. H. M. Ogink

Heerema Marine Contractors, Lieden, the Netherlands

Paper No. OMAE2011-49435, pp. 309-317; 9 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME


A double Birkhoff wake oscillator for the modeling of vortex-induced vibration is presented in which the oscillating variables are assumed to be associated with the boundary layer/near wake and the far wake. The fluid forces are assumed to consist of a potential added mass force and a force due to vortex shedding. In the limit of vanishing incoming flow velocity, the model equations reduce to a form similar to the Morison equation. The results of the double wake oscillator have been compared with forced vibration measurements and free vibration measurements over a range of mass and damping ratios. The model is capable of describing the most important trends in both the forced and free vibration experiments. Specifically, the double wake oscillator is able to model both the upper and lower branch of free vibration.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In