0

Full Content is available to subscribers

Subscribe/Learn More  >

Flat Buoy Concept for Free Standing Riser Application: An Improvement of the In-Place Hydrodynamic Behaviour

[+] Author Affiliations
Romain Vivet

Technip, Paris, France

Matthieu Minguez

Seal Engineering, Nimes, France

Christian Berhault

Principia, La Ciotat, France

Erwan Jacquin

Hydrocean, Paris, France

François Petrie

Oceanide, La Seyne Sur Mer, France

Olivier Flamand

Centre Scientifique et Technique du Batiment, Nantes, France

Paper No. OMAE2011-49329, pp. 223-232; 10 pages
doi:10.1115/OMAE2011-49329
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME

abstract

The study focuses on the in-place hydrodynamic behavior and Flow Induced Response of a novel design of Free Standing Riser (FSR) system tensioned by a ‘Flat-Buoy’. The paper presents results review of both Experimental and Numerical approaches initiated in the framework of a comprehensive Research & Development program. Experimental and numerical study conclusions converge on the excellent hydrodynamic Stability of such FSR system. First, wind tunnel campaign, based on Reynolds similitude, has focused on the flow features over the fixed Flat Buoy. No Vortex Shedding has been clearly highlighted. Moreover, results have pointed out a more pronounced dependence of the hydrodynamic coefficients to the flow incidence than to the Reynolds number. Secondly, basin model tests, based on Reduced Velocity similitude, have highlighted the stability of such scaled FSR system concluding to maximum Cross-Flow and In-Line amplitude such as A/D<0.35 (A represents the amplitude and D the Buoy diameter). In parallel, hydrodynamic stability has been investigated Benchmarking Computational Fluid Dynamic (CFD) methods. Preliminary validation steps have pointed out ability of such CFD approaches to globally predict both Wind Tunnel and Basin Test results. Finally, extending CFD and Fluid Structure Interaction (FSI) modeling to full-scale configuration, stability of the FSR tensioned by a Flat-Buoy has been proved.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In