0

Full Content is available to subscribers

Subscribe/Learn More  >

Friction Factor Estimation for Turbulent Flows in Corrugated Pipes With Rough Walls

[+] Author Affiliations
Maxim Pisarenco, Bas van der Linden, Arris Tijsseling

Eindhoven University of Technology, Eindhoven, The Netherlands

Emmanuel Ory

Single Buoy Moorings Inc., Monaco, Monaco

Jacques Dam

Stork Inoteq, Amsterdam, The Netherlands

Paper No. OMAE2009-79854, pp. 767-776; 10 pages
doi:10.1115/OMAE2009-79854
From:
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Polar and Arctic Sciences and Technology; CFD and VIV
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4345-1 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME

abstract

The motivation of the investigation is critical pressure loss in cryogenic flexible hoses used for LNG transport in offshore installations. Our main goal is to estimate the friction factor for the turbulent flow in this type of pipes. For this purpose, two-equation turbulence models (k–ε and k–ω ) are used in the computations. First, fully developed turbulent flow in a conventional pipe is considered. Simulations are performed to validate the chosen models, boundary conditions and computational grids. Then a new boundary condition is implemented based on the “combined” law of the wall. It enables us to model the effects of roughness (and maintain the right flow behavior for moderate Reynolds numbers). The implemented boundary condition is validated by comparison with experimental data. Next, turbulent flow in periodically corrugated (flexible) pipes is considered. New flow phenomena (such as flow separation) caused by the corrugation are pointed out and the essence of periodically fully developed flow is explained. The friction factor for different values of relative roughness of the fabric is estimated by performing a set of simulations. Finally, the main conclusion is presented: the friction factor in a flexible corrugated pipe is mostly determined by the shape and size of the steel spiral, and not by the type of the fabric which is wrapped around the spiral.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In