Full Content is available to subscribers

Subscribe/Learn More  >

Fully Coupled Fluid-Structure Interaction for Offshore Applications

[+] Author Affiliations
Rajeev K. Jaiman, Farzin Shakib

ACUSIM Software, Inc., Mountain View, CA

Owen H. Oakley, Jr., Yiannis Constantinides

Chevron Energy Technology Co., Bellaire, TX

Paper No. OMAE2009-79804, pp. 757-765; 9 pages
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Polar and Arctic Sciences and Technology; CFD and VIV
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4345-1 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME


CAD integrated tools are accelerating product development by incorporating various aspects of physics through coupling with computational aided engineering (CAE) packages. One of the most challenging areas is fluid-structure interaction (FSI) of low mass bodies such as flexible marine risers/cables with vortex-induced vibrations. The focus of this work is on the application of a new Multi-Iterative Coupling (MIC) procedure to couple AcuSolve (fluid solver) with Abaqus (structural solver). The proposed new scheme has superior stability and convergence properties as compared to conventional explicit staggered schemes, especially for low mass-density ratios of structure to fluid. Demonstrations and validation of the scheme are presented and discussed along with additional challenges associated with FSI in production environments. The addition of an FEA solver enables the modeling of the nonlinear aspects of flexible riser VIV, namely, contacts with gaps, multi-body dynamics, seabed interaction, geometric and/or material nonlinearities.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In