0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation of an SPH Sloshing Simulation by Experiments

[+] Author Affiliations
Csaba Pákozdi, Mateusz Graczyk

MARINTEK, Trondheim, Norway

Paper No. OMAE2009-79792, pp. 729-739; 11 pages
doi:10.1115/OMAE2009-79792
From:
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Polar and Arctic Sciences and Technology; CFD and VIV
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4345-1 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME

abstract

Sloshing is a violent fluid motion and is of current interest for many branches of the industry, among them gas shipping. Numerical methods are an important tool for analyzing sloshing. Among them, methods based on the smooth particle hydrodynamics (SPH) are particularly promising for analyzing violent fluid impacts. Previous work shows a good agreement in terms of free surface elevation between SPH simulation and experiments. An extensive comparison in terms of pressure in the tank is missing. This is due to the fact that availability of reliable and accurate pressure measurements is limited. Therefore sloshing experiments in a two-dimensional tank are performed. A regular one-degree-of-freedom motion with small amplitude is imposed for various frequencies around fluid natural frequency and three filling levels in range 17–40% of the tank length. By means of pressure sensors mounted on the vertical tank wall the pressure is measured for a non-impact type fluid motion. Free surface elevation is measured by wave probes and a high speed video recording is taken. An in-house SPH code is presented in detail. Standard SPH formulation is modified with the focus on implementation of the Verlet time scheme. The Verlet time integration scheme makes it possible to perform long time sloshing simulations due to its good momentum and energy conservation properties. A diffuse term coefficient is applied in the continuity equation. Investigated sloshing cases are without violent fluid impacts. Using artificial mass diffusion term in SPH simulations is expected not to significantly influence the pressure field. The paper shows that applying this technique with carefully chosen coefficient does not lead to any nonphysical phenomena in the SPH simulation for such a sensitive phenomenon as sloshing. By comparing the SPH simulations to the quasi-analytical multimodal method and experiments the code and diffuse term coefficient are validated.

Copyright © 2009 by ASME
Topics: Simulation , Sloshing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In