0

Full Content is available to subscribers

Subscribe/Learn More  >

Fluid-Structure Energy Transfer of a Tensioned Beam Subject to Vortex-Induced Vibrations in Shear Flow

[+] Author Affiliations
Remi Bourguet, Michael S. Triantafyllou

Massachusetts Institute of Technology, Cambridge, MA

Michael Tognarelli, Pierre Beynet

BP America Production Co., Houston, TX

Paper No. OMAE2011-49057, pp. 81-89; 9 pages
doi:10.1115/OMAE2011-49057
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: CFD and VIV; Offshore Geotechnics
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4439-7
  • Copyright © 2011 by ASME

abstract

The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100 . In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lock-in region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In