0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of an Evaporating Meniscus on a Moving Heated Surface

[+] Author Affiliations
Abhijit Mukherjee, Satish G. Kandlikar

Rochester Institute of Technology, Rochester, NY

Paper No. HT-FED2004-56678, pp. 787-794; 8 pages
doi:10.1115/HT-FED2004-56678
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

The present study is performed to numerically analyze an evaporating meniscus on a moving heated surface. This phenomenon is similar to the one observed at the base of a vapor bubble during nucleate boiling. The complete Navier-Stokes equations along with continuity and energy equations are solved. The liquid vapor interface is captured using the level set technique. A column of liquid is placed between two parallel plates with an inlet for water at the top to feed the meniscus. The location of water inlet at the top is kept fixed and the bottom wall is imparted with a velocity. Calculations are done in two-dimensions with a fixed distance between the plates. The main objective is to study the velocity and temperature fields inside the meniscus and calculate the wall heat transfer. The results show that the wall velocity creates a circulation near the meniscus base causing increased wall heat transfer as compared to a stationary meniscus. The local wall heat transfer is found to vary significantly along the meniscus base, the highest being near the advancing contact line.

Copyright © 2004 by ASME
Topics: Evaporation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In